Manticore Search 13.2.3向其K最近邻( KNN )引擎引入了向量量化(VQ)。新功能将RAM使用量减少了十倍,加快了索引速度,同时仍能匹配(甚至超越)全精度向量的搜索吞吐量。
下面您将找到关于VQ的简要介绍、实际示例以及我们使用 manticore-load - Manticore Search的官方负载测试工具运行的基准测试。
什么是向量量化
向量通常以32位浮点数存储。
通过VQ,每个分量被压缩为8位或1位。这将索引大小(因此是RAM)减少了4倍-32倍,而SIMD指令保持距离计算快速。权衡是微小的近似误差,您可以通过过采样和重新评分消除(见下文)。
启用VQ
要在Manticore Search中启用向量量化(VQ),您需要在表创建语句中添加quantization属性。该属性指定您希望应用于向量的量化级别。以下示例演示了如何创建启用VQ的表:
create table products (
title text,
vec float_vector knn_type='hnsw' knn_dims='512' hnsw_similarity='l2' quantization='1bit'
);
在此示例中,quantization='1bit'属性将每个向量分量压缩为1位,显著减少索引大小和RAM使用量。向量在索引期间自动量化,不需要额外文件、训练或后台任务。
配置选项
创建表时的可用选项:
| 设置 | 目的 |
|---|---|
quantization='8bit' | 向量缩小4倍,近零召回损失 |
quantization='1bit' | 向量缩小32倍,不对称量化(见下文)以提高准确性 |
quantization='1bitsimple' | 向量缩小32倍,最快但稍不准确 |
不对称量化解释:
不对称量化意味着查询向量和存储向量使用不同的量化级别。具体来说,查询向量量化为4位,而HNSW索引中存储的向量量化为1位。在搜索期间,计算4位查询向量和1位存储向量之间的距离。这种方法比简单方法提供更高的精度,尽管会带来一些性能权衡。
查询选项
您还可以在运行查询时调整过采样和重新评分:
| 设置 | 目的 |
|---|---|
oversampling=<float> | 使用量化向量获取k × factor候选 |
rescore=1 | 使用全精度向量重新计算距离并重新排序 |
为什么过采样+重新评分很重要
量化通过近似向量距离来加速搜索。这可能会引入微小误差,特别是使用1位压缩时,可能略微影响召回率。为了解决这个问题,您可以:
- 使用过采样从量化索引中获取更多候选
- 使用重新评分使用原始全精度向量重新检查距离并重新排序
它们一起为您提供全精度准确性,同时享受量化向量的速度和内存优势。
这是查询中如何工作的:
select *
from products
where knn(vec, 20, (<your 512-dim vector>), {oversampling = 3.0, rescore = 1});
💡 注意:过采样和重新评分主要对量化向量有用。没有量化时,它们不太可能提高质量,但会减慢速度。
基准测试
测试环境:
- 配备16个物理CPU核心(32个虚拟核心)的服务器
- 100万文档
- 512维L2向量
- batch-size = 10 000
- 索引并发数 = 5
- 搜索线程数可变。
1. 索引速度
向量量化通过减少HNSW图构建期间距离计算的计算开销,显著加速了索引过程。我们的基准测试显示吞吐量和延迟都有显著改善。
| 指标 | 量化 | 全精度 | 改进 |
|---|---|---|---|
| 文档/秒 | 3,890 | 1,776 | 2.2× |
| 平均延迟 | 13.5s | 29.6s | 2.2× |
root@perf3 ~ # manticore-load --drop --wait --batch-size=10000 --threads=5 --total=1000000 --init="create table vq1 ( title text, vec float_vector knn_type='hnsw' knn_dims='512' hnsw_similarity='l2' quantization='1bit' )" --load="insert into vq1 values ( <increment>, '<text/1/2>', (<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>) )"
...
Total time: 04:17
Total queries: 100
Threads: 5
Batch size: 10000
Total docs: 1000000
Docs per sec avg: 3890
QPS avg: 5
QPS 1p: 0
QPS 5p: 0
QPS 95p: 7
QPS 99p: 7
Latency avg: 13460.8 ms
Latency 50p: 915.0 ms
Latency 95p: 99500.0 ms
Latency 99p: 99500.0 ms
root@perf3 ~ # manticore-load --drop --wait --batch-size=10000 --threads=5 --total=1000000 --init="create table v ( title text, vec float_vector knn_type='hnsw' knn_dims='512' hnsw_similarity='l2' )" --load="insert into v values ( <increment>, '<text/1/2>', (<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>) )"
...
Total time: 09:22
Total queries: 100
Threads: 5
Batch size: 10000
Total docs: 1000000
Docs per sec avg: 1776
QPS avg: 5
QPS 1p: 0
QPS 5p: 0
QPS 95p: 8
QPS 99p: 8
Latency avg: 29572.0 ms
Latency 50p: 885.0 ms
Latency 95p: 99500.0 ms
Latency 99p: 99500.0 ms
关键发现:
- 吞吐量提升:量化索引每秒处理3,890个文档,而全精度为1,776个,代表2.2倍的加速
- 延迟降低:平均索引时间从29.6秒降至13.5秒(快2.2倍)
- 一致扩展:两个指标显示相同的改进比例,表明在不同工作负载特征下性能提升稳定
2. RAM占用
量化最显著的优势之一是内存使用量的大幅减少。在处理大规模向量搜索应用时,RAM消耗可能成为关键瓶颈,尤其是在云环境中,内存成本与使用量成线性增长。

上图展示了通过1位量化实现的显著内存效率。量化索引仅需216 MB的RAM,而非量化版本需要2,097 MB。这代表内存使用量减少了90%,使得在相同硬件上处理更大数据集成为可能,或显著降低基础设施成本。
root@perf3 ~ # ls -lah /var/lib/manticore/v/*.spknn /var/lib/manticore/vq1/*.spknn
-rw------- 1 manticore manticore 11M Jul 11 16:52 /var/lib/manticore/vq1/vq1.0.spknn
-rw------- 1 manticore manticore 6.5M Jul 11 16:51 /var/lib/manticore/vq1/vq1.1.spknn
-rw------- 1 manticore manticore 69M Jul 11 16:55 /var/lib/manticore/vq1/vq1.2.spknn
-rw------- 1 manticore manticore 11M Jul 11 16:52 /var/lib/manticore/vq1/vq1.3.spknn
-rw------- 1 manticore manticore 69M Jul 11 16:59 /var/lib/manticore/vq1/vq1.4.spknn
-rw------- 1 manticore manticore 11M Jul 11 16:56 /var/lib/manticore/vq1/vq1.5.spknn
-rw------- 1 manticore manticore 39M Jul 11 17:01 /var/lib/manticore/vq1/vq1.6.spknn
=11+6.5+69+11+69+11+39=216.5
-rw------- 1 manticore manticore 105M Jul 11 17:15 /var/lib/manticore/v/v.0.spknn
-rw------- 1 manticore manticore 21M Jul 11 17:14 /var/lib/manticore/v/v.1.spknn
-rw------- 1 manticore manticore 671M Jul 11 17:23 /var/lib/manticore/v/v.2.spknn
-rw------- 1 manticore manticore 105M Jul 11 17:15 /var/lib/manticore/v/v.3.spknn
-rw------- 1 manticore manticore 671M Jul 11 17:31 /var/lib/manticore/v/v.4.spknn
-rw------- 1 manticore manticore 105M Jul 11 17:24 /var/lib/manticore/v/v.5.spknn
-rw------- 1 manticore manticore 419M Jul 11 17:36 /var/lib/manticore/v/v.6.spknn
3. 搜索吞吐量(无过采样/重新评分)
量化在搜索性能方面真正表现出色。减少的内存占用和简化的距离计算直接转化为更高的查询吞吐量和更低的延迟。本节将探讨在不使用任何额外提高精度技术的情况下,量化对搜索性能的原始影响。

manticore-load \
--threads=1,2,4,8,16,32,48,64 \
--quiet \
--total=30000 \
--load="SELECT * FROM vq1 WHERE KNN(vec, 20, (<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>))"
Threads ; Batch ; Time ; Total Ops ; Avg QPS ; p99 QPS ; p95 QPS ; p5 QPS ; p1 QPS ; Lat Avg ; Lat p50 ; Lat p95 ; Lat p99 ;
1 ; 1 ; 01:53 ; 30000 ; 265 ; 266 ; 266 ; 265 ; 265 ; 3.8 ; 3.5 ; 3.5 ; 3.5 ;
2 ; 1 ; 00:59 ; 30000 ; 506 ; 517 ; 516 ; 498 ; 496 ; 4.0 ; 3.5 ; 6.5 ; 6.5 ;
4 ; 1 ; 00:31 ; 30000 ; 951 ; 968 ; 958 ; 940 ; 939 ; 4.2 ; 3.5 ; 6.5 ; 6.5 ;
8 ; 1 ; 00:17 ; 30000 ; 1733 ; 1748 ; 1748 ; 1715 ; 1715 ; 4.6 ; 4.5 ; 6.5 ; 6.5 ;
16 ; 1 ; 00:10 ; 30000 ; 2981 ; 2987 ; 2987 ; 2973 ; 2973 ; 5.4 ; 5.5 ; 6.5 ; 8.5 ;
32 ; 1 ; 00:06 ; 30000 ; 4306 ; 4343 ; 4343 ; 4250 ; 4250 ; 7.4 ; 7.5 ; 10.5 ; 13.5 ;
48 ; 1 ; 00:06 ; 30000 ; 4472 ; 4484 ; 4484 ; 4440 ; 4440 ; 10.7 ; 9.5 ; 12.5 ; 21.5 ;
64 ; 1 ; 00:06 ; 30000 ; 4445 ; 4471 ; 4471 ; 4406 ; 4406 ; 14.3 ; 13.5 ; 20.5 ; 52.5 ;
root@perf3 ~ # manticore-load --threads=1,2,4,8,16,32,48,64 --quiet --total=30000 --load="SELECT * FROM v WHERE KNN(vec, 20, (<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>))"
Threads ; Batch ; Time ; Total Ops ; Avg QPS ; p99 QPS ; p95 QPS ; p5 QPS ; p1 QPS ; Lat Avg ; Lat p50 ; Lat p95 ; Lat p99 ;
1 ; 1 ; 02:03 ; 30000 ; 243 ; 243 ; 243 ; 242 ; 239 ; 4.1 ; 4.5 ; 4.5 ; 4.5 ;
2 ; 1 ; 01:17 ; 30000 ; 389 ; 432 ; 401 ; 377 ; 370 ; 5.1 ; 4.5 ; 7.5 ; 7.5 ;
4 ; 1 ; 00:37 ; 30000 ; 797 ; 815 ; 814 ; 780 ; 774 ; 5.0 ; 4.5 ; 7.5 ; 7.5 ;
8 ; 1 ; 00:21 ; 30000 ; 1401 ; 1417 ; 1414 ; 1386 ; 1383 ; 5.7 ; 5.5 ; 7.5 ; 8.5 ;
16 ; 1 ; 00:15 ; 30000 ; 1966 ; 2021 ; 2021 ; 1925 ; 1925 ; 8.1 ; 7.5 ; 11.5 ; 13.5 ;
32 ; 1 ; 00:13 ; 30000 ; 2245 ; 2287 ; 2287 ; 2188 ; 2188 ; 14.3 ; 14.5 ; 19.5 ; 24.5 ;
48 ; 1 ; 00:13 ; 30000 ; 2226 ; 2272 ; 2272 ; 2184 ; 2184 ; 21.6 ; 18.5 ; 35.5 ; 62.5 ;
64 ; 1 ; 00:13 ; 30000 ; 2218 ; 2267 ; 2267 ; 2171 ; 2171 ; 28.9 ; 23.5 ; 62.5 ; 135.0 ;
性能图表揭示了量化对搜索吞吐量的几个关键见解:
性能扩展分析
单线程性能:在1个线程时,两种配置表现相似(265 vs 243 QPS),表明量化不会为基本操作引入显著开销。
多线程优势:随着线程数增加,量化索引显示出更优越的扩展特性:
- 2个线程:506 vs 389 QPS(30% 的提升)
- 8个线程:1,733 vs 1,401 QPS(24% 的提升)
- 32个线程:4,306 vs 2,245 QPS(92% 的提升)
- 64个线程:4,445 vs 2,218 QPS(100% 的提升)
饱和行为:量化索引在约48个线程时达到峰值性能(4,472 QPS),而非量化版本在32个线程时就早早达到平台期(2,245 QPS)。这表明量化减少了内存带宽竞争(或CPU缓存竞争),从而更好地利用额外的CPU核心。
从实际角度来看,这意味着:
- 在高并发情况下,查询吞吐量可提高至2倍
- 延迟降低50%,例如在32个线程时,7 ms vs 14 ms
4. 带过采样 + 重排序的搜索吞吐量
量化搜索可以非常快速,但为了恢复接近全精度的召回率,可以启用过采样和重排序。这意味着从紧凑的量化索引中获取更多候选者,然后使用原始全精度向量重新计算与查询向量的距离,并重新排序结果。
在不同线程数下的表现如下:

manticore-load \
--threads=1,2,4,8,16,32,48,64 \
--quiet \
--total=30000 \
--load="SELECT * FROM vq1 WHERE KNN(vec, 20, (<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>), {oversampling=3.0, rescore=1})"
Threads ; Batch ; Time ; Total Ops ; Avg QPS ; p99 QPS ; p95 QPS ; p5 QPS ; p1 QPS ; Lat Avg ; Lat p50 ; Lat p95 ; Lat p99 ;
1 ; 1 ; 02:12 ; 30000 ; 226 ; 227 ; 227 ; 226 ; 226 ; 4.4 ; 4.5 ; 4.5 ; 4.5 ;
2 ; 1 ; 01:10 ; 30000 ; 426 ; 440 ; 439 ; 416 ; 412 ; 4.7 ; 4.5 ; 7.5 ; 7.5 ;
4 ; 1 ; 00:37 ; 30000 ; 807 ; 819 ; 815 ; 795 ; 794 ; 5.0 ; 4.5 ; 7.5 ; 7.5 ;
8 ; 1 ; 00:20 ; 30000 ; 1461 ; 1473 ; 1472 ; 1447 ; 1447 ; 5.5 ; 5.5 ; 7.5 ; 7.5 ;
16 ; 1 ; 00:12 ; 30000 ; 2369 ; 2404 ; 2404 ; 2346 ; 2346 ; 6.8 ; 6.5 ; 9.5 ; 10.5 ;
32 ; 1 ; 00:09 ; 30000 ; 3217 ; 3261 ; 3261 ; 3186 ; 3186 ; 10.0 ; 9.5 ; 12.5 ; 17.5 ;
48 ; 1 ; 00:09 ; 30000 ; 3275 ; 3340 ; 3340 ; 3158 ; 3158 ; 14.7 ; 13.5 ; 21.5 ; 39.5 ;
64 ; 1 ; 00:09 ; 30000 ; 3286 ; 3352 ; 3352 ; 3242 ; 3242 ; 19.5 ; 17.5 ; 30.5 ; 73.5 ;
manticore-load \
--threads=1,2,4,8,16,32,48,64 \
--quiet \
--total=30000 \
--load="SELECT * FROM v WHERE KNN(vec, 20, (<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>,<float/0/1>), {oversampling=3.0, rescore=1})"
Threads ; Batch ; Time ; Total Ops ; Avg QPS ; p99 QPS ; p95 QPS ; p5 QPS ; p1 QPS ; Lat Avg ; Lat p50 ; Lat p95 ; Lat p99 ;
1 ; 1 ; 02:39 ; 30000 ; 188 ; 189 ; 189 ; 188 ; 188 ; 5.3 ; 5.5 ; 5.5 ; 5.5 ;
2 ; 1 ; 01:46 ; 30000 ; 281 ; 292 ; 287 ; 275 ; 272 ; 7.1 ; 6.5 ; 9.5 ; 9.5 ;
4 ; 1 ; 00:57 ; 30000 ; 519 ; 547 ; 535 ; 507 ; 505 ; 7.7 ; 7.5 ; 10.5 ; 11.5 ;
8 ; 1 ; 00:38 ; 30000 ; 777 ; 795 ; 790 ; 767 ; 764 ; 10.3 ; 10.5 ; 13.5 ; 14.5 ;
16 ; 1 ; 00:34 ; 30000 ; 859 ; 865 ; 863 ; 854 ; 854 ; 18.6 ; 17.5 ; 30.5 ; 33.5 ;
32 ; 1 ; 00:34 ; 30000 ; 863 ; 876 ; 872 ; 856 ; 855 ; 37.1 ; 37.5 ; 44.5 ; 50.5 ;
48 ; 1 ; 00:33 ; 30000 ; 905 ; 940 ; 936 ; 883 ; 881 ; 53.1 ; 50.5 ; 67.5 ; 92.5 ;
64 ; 1 ; 00:32 ; 30000 ; 918 ; 970 ; 952 ; 886 ; 883 ; 68.9 ; 62.5 ; 79.5 ; 91.5 ;
尽管有额外的重排序步骤,量化向量在高并发情况下仍能实现比相同选项的全精度向量高3–4倍的QPS。
5. 过采样和重排序的影响
那么,为了获得全精度召回率,需要付出多少性能代价?以下是使用过采样和重排序在32个线程时的QPS情况。
性能影响(32个线程时的QPS)
| 配置 | 每秒查询数 |
|---|---|
| 量化(1位) | 4306 |
| 量化 + 过采样/重排序 | 3217 |
| 全精度 | 2245 |
| 全精度 + 过采样/重排序 ⚠️ | 863 |
⚠️ 过采样和重排序不会改善全精度向量的结果——反而会减慢速度。

所有测试均使用 manticore-load 运行。您可以在几分钟内重现这些测试或创建自己的场景。
结论
Manticore Search 13.2.3 中的向量量化提供了速度、效率和精度之间的强大平衡。它无需复杂的设置,即可立即带来好处,并且足够灵活,适用于各种实际应用场景——从内存受限的部署到高吞吐量的搜索系统。
- 一个选项 ——
quantization='1bit'—— 即可带来显著提升。它可将 HNSW 索引大小减少高达90%,大幅降低RAM使用量,并提高整体系统效率。 - 索引构建速度可提高至2倍,因为量化向量简化并加速了 HNSW 图构建期间的距离计算。
- 搜索吞吐量可提高高达4倍,尤其是在高并发情况下。量化索引在多个CPU核心上扩展性更好,并显著降低延迟。
- 通过启用
oversampling和rescore,仍可获得接近全精度的准确性。这些选项仅在需要时选择性地应用全精度检查,对性能影响很小。 - 量化设计为易于采用——无需模型训练,无需预处理,只需在表创建时设置一个标志。
- 升级到 Manticore Search 13.2.3 并启用量化是一种低投入、高回报的优化。您将减少内存占用,加快索引构建速度,并在每个核心上处理更多查询——同时保持准确性。
无论您是在为高流量产品目录构建搜索,还是在优化向量驱动的聊天机器人,量化都能帮助您更快、更智能地扩展——而不会牺牲相关性。
